Wednesday 29 February, 2012

Our Early Universe: Inflation, or Something Totally Wacky?


A schematic look at the universe - where it came from and where it is now. Credit: NASA.
Astronomers generally accept the theory that our universe looks the way it does because of cosmic inflation — rapid expansion in the moments after its birth. This explains the expanse and apparent flat shape of the universe observed through instruments like NASA’s Wilkinson Microwave Anisotropy Probe. But inflation isn’t the only model that explains the early universe. There are others, and they get wacky. 
Three physicists from the University at Buffalo — Ghazal Geshnizjani, Will Kinney and Azadeh Moradinezhad Dizgah — set out to investigate other cosmic models. Their study titled “General Conditions for Scale-Invariant Perturbations in an Expanding Universe” appeared in November in the online Journal of Cosmology and Astroparticle Physics (not to be confused with theJournal of Cosmology) and contained some interesting results.
This picture of the infant universe from NASA's Wilkinson Microwave Anisotropy Probe (WMAP) reveals 13 billion+ year old temperature fluctuations that correspond to the seeds that grew to become the galaxies. Credit: NASA Goddard Space Flight Center.
They stuck with the basics — that the theory of gravity is correct and that the early universe did rapidly expand. With these two constraints, the team found that only three models explain the early universe and the distribution of matter we observe today. But these models require very strange physics.
According to their calculations, the early universe required an accelerated cosmic expansion (inflation), a speed of sound faster than the speed of light, or extremely high cosmic energy to end up with our current universe. The third model actually demands such high energy that scientists would need to invoke a theory of quantum gravity like string theory to explain the extra dimensions of space-time that would pop up.
The takeaway message? Inflation turns out to be the only way to explain the universe within the context of standard physics, said Kinney. He allows that someone might come up with exotic physics to explain or create other models, like a speed of sound faster than that of light, but suspects people are more comfortable working with models that fit within commonly accepted laws of particle physics.
The difficulty of explaining other models, said Kinney, “puts the idea of inflation on a much stronger footing, because the available alternatives have problems, or weirdnesses, with them.”
Cosmic inflation incorporates quantum field theory to explain the distribution of matter in the universe. Under normal circumstances, particles of matter and antimatter can pop into existence suddenly before colliding and annihilating each other instantly. These pairs flew apart so rapidly after the universe’s birth that they didn’t have a chance to recombine. The same theory applies to gravitons and antigravitons, which form gravity waves.
These particles of matter are the basis of all structure in the universe today. Tiny fluctuations cause matter to collapse and form stars, planes, and galaxies.
But the hunt for other viable models continues. Kinney for one isn’t finished exploring other theories, including those that rely on superluminal sound speeds. There may yet be some major changes to our understanding of the cosmos.

Sunday 19 February, 2012

Infographic: The Anatomy of a Supersonic Freefall


What are all the steps and stages of Felix Baumgartner’s record-setting freefall attempt which will take place later this year? This infographic provides a look at what happen during the jump.
More info see our article about Baumgartner and the Red Bull Stratos mission, or the Red Bulletin. Alan Boyle’s Cosmic log has a different version of this infographic, a larger (12MB) pdf.

Weekly SkyWatcher’s Forecast: February 19-25, 2012


Messier 41 - Credit: NOAO/AURA/NSF
Greetings, fellow SkyWatchers! It’s going to be an awesome week as we watch the planets – Mars, Saturn, Jupiter, Venus and Mercury – dance along the ecliptic plane. You don’t even need a telescope for this show! But that’s not all. We’ll take a look at a wealth of bright star clusters, challenging studies and lots more. I’ll see you in the back yard…
Sunday, February 19 – Today is the birthday of Nicolas Copernicus. Born in 1473, he was the creator of the modern solar system model which illustrated the retrograde motion of the outer planets. Considering this was well over 530 years ago, and in a rather “unenlightened” time, his revolutionary thinking about what we now consider natural is astounding.
Have you been observing retrograde motion while keeping track of Mars? Good for you! You may have also noticed that Mars has dimmed slightly over the last few weeks. Right now it’s around -1.0. Keep track of its many faces!
While we still have dark skies on our side, let’s head for a handful of difficult nebulae in a region just west of Gamma Monocerotis. For binoculars, check out the region around Gamma, it is rich in stars and very colorful! You are looking at the very outer edge of the Orion spiral arm of our galaxy. For small scopes, have a look at Gamma itself – it’s a triple system that we’ll be back to study. For larger scopes? It’s Herschel hunting time…
NGC 2183 (Right Ascension: 6 : 10.8 – Declination: -06 : 13 ) and NGC 2185 (Right Ascension: 6 : 11.1 – Declination: -06 : 13 ) will be the first you encounter as you move west of Gamma. Although they are faint, just remember they are nothing more than a cloud of dust illuminated by faint stars on the edge of the galactic realm. The stars that formed inside provided the light source for these wispy objects and at their edges lay in intergalactic space.
To the southwest is the weaker NGC 2182 (Right Ascension: 6 : 09.5 – Declination: -06 : 20), which will appear as nothing more than a faint star with an even fainter halo about it, with NGC 2170 (Right Ascension: 6 : 07.5 – Declination: -06 : 24) more strongly represented in an otherwise difficult field. While the views of these objects might seem vaguely disappointing, you must remember that not everything is as bright and colorful as seen in a photograph. Just knowing that you are looking at the collapse of a giant molecular cloud that’s 2400 light-years away is pretty impressive!
Monday, February 20 – Today in history celebrates the Mir space station launch in 1986. Mir (Russian for “peace”) was home to both cosmonauts and astronauts as it housed 28 long duration crews during its 15 years of service. To date it is one of the longest running space stations and a triumph for mankind. Spasiba! Today in 1962, John Glenn was onboard Friendship 7 and became the first American to orbit the Earth. As Colonel Glenn looked out the window, he reported seeing “fireflies” glittering outside his Mercury space capsule. Let’s see if we can find some…
The open cluster M41 (Right Ascension: 6 : 46.0 – Declination: -20 : 44) in Canis Major is just a quick drift south of the brightest star in the northern sky – Sirius. Even the smallest scopes and binoculars will reveal this rich group of mixed magnitude stars and fill the imagination with strange notions of reality. Through larger scopes, many faint groupings emerge as the star count rises to well over 100 members. Several stars of color – orange in particular – are also seen along with a number of doubles.
First noted telescopically by Giovanni Batista Hodierna in the mid-1500s, ancient texts indicate that Aristotle saw this naked-eye cluster some 1800 years earlier. Like other Hodierna discoveries, M41 was included on Messier’s list – along with even brighter clusters of antiquity such as Praesepe in Cancer and the Pleiades in Taurus. Open cluster M41 is located 2300 light years away and recedes from us at 34km/sec – about the speed Venus moves around the Sun. M41 is a mature cluster, around 200 million years old and 25 light years in diameter. Remember M41… Fireflies in night skies.
Tuesday, February 21 – Tonight is New Moon! Tonight let’s take a journey just a breath above Zeta Tauri and spend some quality time with a pulsar embedded in the most famous supernova remnant of all. Factually, we know the Crab Nebula to be the remains of an exploded star recorded by the Chinese in 1054. We know it to be a rapid expanding cloud of gas moving outward at a rate of 1,000 km per second, just as we understand there is a pulsar in the center. We also know it as first recorded by John Bevis in 1758, and then later cataloged as the beginning Messier object – penned by Charles himself some 27 years later to avoid confusion while searching for comets. We see it revealed beautifully in timed exposure photographs, its glory captured forever through the eye of the camera — but have you ever really taken the time to truly study M1 (Right Ascension: 5 : 34.5 – Declination: +22 : 01)? Then you just may surprise yourself…
In a small telescope, M1 might seem to be a disappointment – but do not just glance at it and move on. There is a very strange quality to the light which reaches your eye, even though initially it may just appear as a vague, misty patch. Allow your eyes to adjust and M1 will appear to have “living” qualities – a sense of movement in something that should be motionless. The “Crab” holds true to many other spectroscopic studies. The concept of differing light waves crossing over one another and canceling each other out – with each trough and crest revealing differing details to the eye – is never more apparent than during study. To observe M1 is to at one moment see a “cloud” of nebulosity, the next a broad ribbon or filament, and at another a dark patch. When skies are stable you may see an embedded star, and it is possible to see six such stars.
Many observers have the ability to see spectral qualities, but they need to be developed. From ionization to polarization – our eye and brain are capable of seeing to the edge of infra-red and ultra-violet. Even a novice can see the effects of magnetism in the solar “Wilson Effect.” But what of the spinning neutron star at M1?s heart? We’ve known since 1969 that M1 produces a “visual” pulsar effect. About once every five minutes, changes occurring in the neutron star’s pulsation affect the amount of polarization, causing the light waves to sweep around like a giant “cosmic lighthouse” and flash across our eyes. M1 is much more than just another Messier. Capture it tonight!!
Wednesday, February 22 – Today in 1966, Soviet space mission Kosmos 110 was launched. Its crew was canine, Veterok (Little Wind) Ugolyok (Little Piece of Coal); both history making dogs. The flight lasted 22 days and held the record for living creatures in orbit until 1974 – when Skylab 2 carried its three-man crew for 28 days.
Since we’ve studied the “death” of a star, why not take the time tonight to discover the “birth” of one? Our journey will start by identifying Aldeberan (Alpha Tauri) and move northwest to bright Epsilon. Hop 1.8 degrees west and slightly to the north for an incredibly unusual variable star – T Tauri.
Discovered by J.R. Hind in October 1852, T Tauri and its accompanying nebula, NGC 1555 (Right Ascension: 4 : 22.9 – Declination: +19 : 32), set the stage for discovery with a pre-main sequence variable star. Hind reported the nebula, but also noted that no catalog listed such an object in that position. His observations also included a 10th magnitude uncharted star and he surmised that the star in question was a variable. On each count Hind was right, and both were followed by astronomers for several years until they began to fade in 1861. By 1868, neither could be seen and it wasn’t until 1890 that the pair was re-discovered by E.E. Barnard and S.W. Burnham. Five years later? They vanished again.
T Tauri is the prototype of this particular class of variable stars and is itself totally unpredictable. In a period as short as a few weeks, it might move from magnitude 9 to 13 and other times remain constant for months on end. It is about equal to our own Sun in temperature and mass – and its spectral signature is very similar to Sol’s chromosphere – but the resemblance ends there. T Tauri is a star in the initial stages of birth!
T Tauri are all pre-main sequence and are considered “proto-stars”. In other words, they continuously contract and expand, shedding some of their mantle of gas and dust. This gas and dust is caught by the star’s rotation and spun into an accretion disc – which might be more properly referred to as a proto-planetary disc. By the time the jets have finished spewing and the material is pulled back to the star by gravity, the proto-star will have cooled enough to have reached main sequence and the pressure may have allowed planetoids to form from the accreted material.
Thursday, February 23 – If you have an open western horizon, then be out at twilight! Right now the speedy inner planet – Mercury – will make a brief appearance. Depending on your time zone, you might also spot a very young Moon just above it! For curiosity seekers, you can also find asteroid Vesta to the south of the Moon, along with planet Uranus to the south-east. How cool is that?!
In 1987, Ian Shelton made an astonishing visual discovery – SN 1987a. This was the brightest supernova in 383 years. More importantly, before it occurred, a blue star of roughly 20 solar masses was already known to exist in that same location within the Large Magellanic Cloud. Catalogued as Sanduleak -69-202, that star is now gone. With available data on the star, astronomers were able to get a “before and after” look at one of the most extraordinary events in the universe! Tonight, let’s have a look at a similar event known as “Tycho’s Supernova.”
Located northwest of Kappa Cassiopeia, SN1572 appeared so bright in that year that it could be seen with the unaided eye for six months. Since its appearance was contrary to Ptolemaic theory, this change in the night sky now supported Copernicus’ views and heliocentric theory gained credence. We now recognize it as a strong radio source, but can it still be seen? There is a remnant left of this supernova, and it is challenging even with a large telescope. Look for thin, faint filaments that form an incomplete ring around 8 arc minutes across.
Friday, February 24 – Tonight the slender first crescent of the Moon makes its presence known on the western horizon. Before it sets, take a moment to look at it with binoculars. The beginnings of Mare Crisium will show to the northeast quadrant, but look just a bit further south for the dark, irregular blotch of Mare Undarum – the Sea of Waves. On its southern edge, and to lunar east, look for the small Mare Smythii – the “Sea of Sir William Henry Smyth.” Further south of this pair and at the northern edge of Fecunditatis is Mare Spumans – the “Foaming Sea.” All three of these are elevated lakes of aluminous basalt belonging to the Crisium basin.
For telescope users, wait until the Moon has set and return to Beta Monocerotis and head about a fingerwidth northeast for an open cluster challenge – NGC 2250 (Right Ascension: 6 : 32.8 – Declination: -05 : 02). This vague collection of stars presents itself to the average telescope as about 10 or so members that form no real asterism and makes one wonder if it is indeed a cluster. So odd is this one, that a lot of star charts don’t even list it!
Today in 1968, during a radar search survey, the first pulsar was discovered by Jocelyn Bell. The co-directors of the project, Antony Hewish and Martin Ryle, matched these observations to a model of a rotating neutron star, winning them the 1974 Physics Nobel Prize and proving a theory of J. Robert Oppenheimer from 30 years earlier.
Would you like to get a look at a region of the sky that contains a pulsar? Then wait until the Moon has well westered and look for guidestar Alpha Monocerotis to the south and bright Procyon to its north. By using the distance between these two stars as the base of an imaginary triangle, you’ll find pulsar PSR 0820+02 at the apex of your triangle pointed east.
Saturday, February 25 – As the Moon begins its westward journey after sunset in a position much easier to observe. The lunar feature we are looking for is at the north-northeast of the lunar limb and its view is often dependent on libration. What are we seeking? “The Sea of Alexander von Humboldt”…
Mare Humboldtianum can sometimes it can be hidden from view because it is an extreme feature. Spanning 273 kilometers, the basin in which it is contained extends for an additional 600 kilometers and continues around to the far side of the Moon. The mountain ranges which accompany this basin can sometimes be glimpsed under perfect lighting conditions, but ordinarily are just seen as a lighter area. The mare was formed by lava flow into the impact basin, yet more recent strikes have scarred Humboldtianum. Look for a splash of ejecta from crater Hayn further north, and the huge, 200 kilometer strike of crater Bel’kovich on Humboldtianum’s northeast shore.
When the Moon begins to wester, let’s head for Beta Monocerotis and hop about 3 fingerwidths east for an 8.9 magnitude open cluster that can be spotted with binoculars and is well resolved with a small telescope – NGC 2302 (Right Ascension: 6 : 51.9 – Declination: -07 : 04). This very young stellar cluster resides at the outer edge of the Orion spiral arm. While binoculars will see a handful of stars in a small V-shaped pattern, telescope users should be able to resolve 40 or so fainter members.
Until next week, may all of your journeys be at light speed!
If you enjoy the weekly observing column, then you’ll love the book, The Night Sky Companion 2012 written by Tammy Plotner. This fully illustrated observing guide includes star charts for your favorite objects and much more!


Thursday 2 February, 2012

GRAIL Sends Back First Video of the Moon’s Far Side


A first look from GRAIL, showing the lunar far side! A camera aboard ‘Ebb’ — one of NASA’s twin Gravity Recovery And Interior Laboratory (GRAIL) lunar spacecraft has returned its first unique view of the far side of the Moon. The camera is the MoonKAM, which is part of a special program for students to study the Moon.
“The quality of the video is excellent and should energize our MoonKAM students as they prepare to explore the Moon,” said Maria Zuber, GRAIL principal investigator.

In the video, the north pole of the Moon is visible at the top of the screen as the spacecraft flies toward the lunar south pole. One of the first prominent geological features seen on the lower third of the Moon is the Mare Orientale, a 900-kilometer-wide (560-mile) impact basin that straddles both the Moon’s near and far side.
GRAIL consists of two identical spacecraft, recently named Ebb and Flow, and each are equipped with a MoonKam. The images were taken as part of a test of Ebb’s MoonKam on Jan. 19. The GRAIL project plans to test the MoonKAM aboard Flow soon.

Tuesday 31 January, 2012

Students Discover Millisecond Pulsar, Help in the Search for Gravitational Waves



Using an array of millisecond pulsars, astronomers can detect tiny changes in the pulse arrival times in order to detect the influence of gravitational waves. Credit: NRAO























A special project to search for pulsars has bagged the first student discovery of a millisecond pulsar – a super-fast spinning star, and this one rotates about 324 times per second. The Pulsar Search Collaboratory (PSC) has students analyzing real data from the National Radio Astronomy Observatory’s (NRAO) Robert C. Byrd Green Bank Telescope (GBT) to find pulsars. Astronomers involved with the project said the discovery could help detect elusive ripples in spacetime known as gravitational waves.
“Gravitational waves are ripples in the fabric of spacetime predicted by Einstein’s theory of General Relativity,” said Dr. Maura McLaughlin, from West Virginia University. “We have very good proof for their existence but, despite Einstein’s prediction back in the early 1900s, they have never been detected.”

Four other pulsars have been discovered by high school students participating in this project.

Pulsar hunters Sydney Dydiw of Trinity High School, Emily Phan of George C. Marshall High School, Anne Agee of Roanoke Valley Governor's School, and Jessica Pal of Rowan County High School. Not pictured: Max Sterling of Langley High School. Credit: NRAO
“When you discover a pulsar, you feel like you’re walking on air! It is the best experience you can ever have,” said student co-discoverer Jessica Pal of Rowan County High School in Kentucky. “You get to meet astronomers and talk to them about your experience. I still can’t believe I found a pulsar. It is wonderful to know that there is something out there in space that you discovered.”
The other student involved in the discovery was Emily Phan of George C. Marshall High School in Virginia, who along with Pal found the millisecond pulsar on January 17, 2012. It was later confirmed by Max Sterling of Langley High School, Sydney Dydiw of Trinity High School, and Anne Agee of Roanoke Valley Governor’s School, all in Virginia.
“I am considering pursuing astronomy as a career choice,” said Agee. “The Pulsar Search Collaboratory has opened my eyes to how fun astronomy can be!”
Once the pulsar candidate was reported to NRAO, a followup observing session was scheduled on the giant, 17-million-pound telescope. On January 24, 2012, observations confirmed that the pulsar was real.
Pulsars are spinning neutron stars that sling “lighthouse beams” of radio waves around as they rotate. A neutron star is what is left after a massive star explodes at the end of its “normal” life. With no nuclear fuel left to produce energy to offset the stellar remnant’s weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name “neutron star.” One tablespoon of material from a pulsar would weigh 10 million tons.

On January 24, 2012, observations with the Green Bank Telescope at 800 MHz confirmed that the signal was astronomical and zeroed in on its position. Pulsars are brighter at lower frequencies (like 350 MHz, above) than at higher frequencies, and so the confirmation plot is noisier than the original data. Since this pulsar spins so fast, it may be used as part of the pulsar timing array used to detect gravitational waves. Courtesy NRAO.
The object that the students discovered is a special class of pulsars called millisecond pulsars, which are the fastest-spinning neutron stars. They are highly stable and keep time more accurately than atomic clocks.
Astronomers don’t know much about them, however. But because of their stability, these pulsars may someday allow astronomers to detect gravitational waves.
Millisecond pulsars, however, could hold the key to that discovery. Like buoys bobbing on the ocean, pulsars can be perturbed by gravitational waves.
“Gravitational waves are invisible,” said McLaughlin. “But by timing pulsars distributed across the sky, we may be able to detect very small changes in pulse arrival times due to the influence of these waves.”
Millisecond pulsars are generally older pulsars that have been “spun up” by stealing mass from companion stars, but much is left to discover about their formation.
“This latest discovery will help us understand the genesis of millisecond pulsars,” said Dr. Duncan Lorimer, who is also part of the project. “It’s a very exciting time to be finding pulsars!”

Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF
The PSC is a joint project of the National Radio Astronomy Observatory and West Virginia University, funded by a grant from the National Science Foundation. The PSC includes training for teachers and student leaders, and provides parcels of data from the GBT to student teams. The project involves teachers and students in helping astronomers analyze data from the GBT.
Approximately 300 hours of the observing data were reserved for analysis by student teams. These students have been working with about 500 other students across the country. The responsibility for the work, and for the discoveries, is theirs. They are trained by astronomers and by their teachers to distinguish between pulsars and noise.
The PSC will continue through the 2012-2013 school year. Teachers interested in participating in the program can learn more at this link. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

How Well Can Astronomers Study Exoplanet Atmospheres?


Artist's impression of exoplanets around other stars. Credits: ESA/AOES Medialab
Exoplanet discoveries are happening at a frenetic pace, and some of the latest newly discovered worlds are sometimes described as “Earth-Like” and “potentially habitable.”
The basis of this comparison is, in many cases, based on the distance between the exoplanet and its host star. Unfortunately the distance between a planet and its host star is only half the picture. The other half is determining if an exoplanet has an atmosphere, and what the contents of said atmosphere may be.
Basically, just because an exoplanet is in the “habitable zone” around its host star, it may not necessarily be habitable. If an exoplanet has a thick, crushing, Venus-Like atmosphere, it would most likely be too hot for surface water. The opposite holds true as well, as it could be entirely possible for an exoplanet to have a thin, wispy Mars-like atmosphere where any water would be locked up as ice.
At this point, how well can astronomers study the atmosphere around an exoplanet?
The spectrum from a giant exoplanet, orbiting around the bright, young, star HR 8799. Image Credit: ESO/M. Janson
Currently, there are only a handful of methods researchers can use to make estimates of exoplanet atmospheres. Interestingly enough, one method makes use of the light coming from the host star. The basic principle is that the light from a star can be analyzed both before and after an exoplanet crosses in front of the star. By comparing the spectrum from the host star, and the spectrum of an exoplanet, the tell-tale signs of atmospheric contents can be detected.
Methods to detect the atmospheric composition of such distant worlds are fairly new, as shown by work done with the Spitzer Space Telescope and ESO’s Very Large Telescope
Recently, astronomers from The Sternberg Astronomical Institute at Moscow State University used data from the Hubble Space Telescope in an attempt to better detect atmospheres around exoplanets. Abubekerov and team created mathematical models to analyze light curves from distant stars. In the case of Abubekerov’s research, the selected star was HD 189733 – a K-class star a bit cooler and smaller than our Sun.
About 60 light-years from Earth, HD 189733 also happens to have a binary companion orbiting it at a radius of about 200 A.U. So far, one exoplanet is known to orbit HD 189733. Discovered in 2005, HD 189733 b is a roughly Jupiter-size exoplanet which orbits its host star in just over two days. While not mentioned directly in Abubekerov’s paper, other studies have detected methane, carbon monoxide, water vapor and sodium in HD 189733 b’s atmosphere.
Light curve from HD 189733 in 5500 - 6000 angstrom range.
By applying their models to the light curves from HD 189733, Abubekerov’s team was able to better understand how light at different wavelengths behaves when an exoplanet crosses in front of its host star.
According to Abubekerov and team, the end result of their research was unsuccessful. The team suspects dark spot activity on HD 189733 was a contributing factor to their models not agreeing with actual observations.
The team stressed that additional observational data from HD 189733 when spot activity is negligible would be required to further refine their work. Despite their models not being successful, the team is confident that exoplanet radius increases with decreasing wavelength, which may imply the presence of an atmosphere.
Research such as Abubekerov’s will help astronomers build better models and pave the way for “sniffing” exoplanet atmospheres. Newer technology such as the James Webb Space Telescope and the European Extremely Large Telescope will also provide better data. In the not-too-distant future, astronomers and astrobiologists should be able to examine the atmospheres of exoplanets in the habitable zone.
If you’d like to read the full research paper, you can access a pre-print version at:http://arxiv.org/pdf/1201.4043v1.pdf